Live Electronic Living Electronic Living Live Acoustics
  • Acoustics
  • Acoustics
  • Acoustics
  • >
1 2 3

Mitigate Air-borne and Structure-Borne Noise and Vibration

Air-borne Noise

Airborne noise is transmitted through loud voices, machinery, television, radio, barking dogs, jets flying overhead, trucks, trains or any other noisy machinery passing by.

Structure-borne noise

Structure-borne noise is noise that occurs from the impact of an object hitting a surface, like heavy dragging accross the floor. The impact causes both sides of the inflicted surface to vibrate and generate sound waves. For example, if your upstairs neighbor drops a plate or a kitchen pot onto the floor, the collision will vibrate from the floor up into their space as well as down the other side, through the ceiling of your space. The key to reducing structure-borne noise is weakening the vibrations created from the noise source. While it is impossible to eliminate all structure-borne noise, there are a number of ways to greatly reduce it. There are a wide range of noises and vibration sources which should be considered significant and included in the structural design review and isolation design provision. Structure-borne noise is generally transmitted through solid structures, such as steel, wood, concrete, stone etc. This includes for example impact sound and part of the noise generated by the technical machinery installed in a building. The unit of measurement for describing sound is the decibel ("dB").

Flanking Transmission

Flanking transmission - a more complex type of noise transmission, is where the resulting vibrations from a noise sources are transmitted to other rooms of the building usually by elements of structure within the building. For example, in a steel framed building, once the frame itself is set into motion the effective transmission can be pronounced.

Structure-borne noise and vibration control

Structure Borne Noise and Vibration Control is the integration of a specific design to reduce and minimise structure borne noise energy from propagating and entering the acoustically sensitive spaces.The aim of the vibration isolation design is to achieve the recommended or required ambient vibration criteria within the building structure to a specific Vibration Criteria level. Vibration Isolation design would consider the occurring natural structural members' natural frequencies, by analysing the building design dynamics and dimensions, column and beam structural design to establish the most efficient engineering solution.

A simple diagram showing sources of acoustic noise and vibration through structures and different materials

Sources of acoustic Noise and Vibration.
Live Acoustics provide a comprehensive service to help you minimise acoustic noise and vibration.

  • Live Acoustics
  • Live Acoustics
  • Live Acoustics
  • Acoustic Ceiling
  • Acoustic Ceiling
  • Acoustic Ceiling
  • Acoustic Ceiling

"Need a Space that Mitigates Excess Sound?"

"Then you need the right solution for the right situation!"

Live Acoustics have a proven track record in providing effective Acoustic Solutions

Understanding Acoustic Concepts and Terminology

High Sound Absorption is very important in open office spaces, lobbies, passages, boardrooms and theatres where people need to talk normally without affecting others in the rest in the space.

High Sound Absorption distributed throughout the space also significantly reduces flanking noise between rooms, so people can easily talk to each other without disturbing people in the room next door.

Sound absorption is the measure of the energy removed or energy reduction of the sound wave as the wave passes through a given thickness or type of material. Sound absorption is necessary for soundproofing.

While distributing the sound wave into an absorbable material, the sound wave in addition to absorption could also experience sound wave reflection, as energy dissipate and displaces. Dampening or vibration or energy loss results as the energy-dissipated is converted into heat.

Soundproofing makes (a room or building) resistant to the passage of sound or prevents sound from traveling. Soundproofing products block sound from leaving or entering a room, and consist of dense layers inside walls, between floors and above basement ceiling drywall.

Soundproofing ideally occurs in early construction, as it can be a challenge to soundproof a room once the construction is completed.

Sound absorption involves the absorption of sound. Sound absorption happens when the sound waves is absorbed by a material Sound absorption enhances the space’s sound quality as it reduces unwanted noise and dampens sounds, like echoes and reverberation vibration. Sound absorption products can be temporary and non-permanent, unlike soundproofing products (and layers). Acoustic fabric wall panels are one such sound absorption product, and this is our focus in this feature.

Sound is created by the vibration of substance and is spread by sound wave produced through the sympathetic vibration of the medium. When sound is spreading, part of it is gradually diffused and part of it is weakened due to the absorption of air molecules, which are more apparent in the open air; but in indoors sound is much less diffused or weakened, instead it is mainly absorbed by the surface of materials.

When a sound wave meets the surface of a material, part of it is reflected, part of it passes through the material, and the rest of it is transferred to the material. The part of sound wave transferred to the material enters the pores of the material and causes the friction and viscosity resistance between the air molecules and the wall of pores, thus certain part of sound energy is converted into heat energy and is absorbed in this way.

The sound absorption coefficient is used to evaluate the sound absorption efficiency of materials. It is the ratio of absorbed energy to incident energy and is represented by α. If the acoustic energy can be absorbed entirely, then α = 1

NB: The air gap between the acoustic layer and the space behind increases the sound absorption coefficient value in the mid and higher frequency ranges

The density of the acoustic material is also important. Less dense and more open structures absorb the sound of low frequencies (500Hz) while the denser structures perform better for frequencies above than 2000 Hz range

A NRC is an average rating of how much sound an acoustic product can absorb. An NRC of zero means that the product absorbs no sound. An NRC of 1 means that the product absorbs all the sound. The higher the NRC, the better the product is at absorbing the sound.

A .90 or .95 NRC rating. A Noise Reduction Coefficient of .90 or .95 means our panels are big sound absorbing sponges, absorbing 90% or 95% of the noise, creating a more pleasantly sounding environment.

Formaldehyde is a colourless, strong-smelling gas. It is widely used in the manufacture of building materials and many other household products.

Some unfortunately are still using it in homes as an adhesive resin in some compressed wood products. Building materials made with formaldehyde resins can radiate formaldehyde gas.

Formaldehyde exposure has various bad side effects Formaldehyde has a link to some forms of cancer in animals and humans.

When present in the air at levels at or above 0.1 ppm, acute health effects can occur including watery eyes; burning sensations in the eyes, nose and throat; nausea; coughing; chest tightness; wheezing; skin rashes; and other irritating effects. The World Health Organization recommends that exposure should not exceed 0.05 ppm.

Volatile organic compounds (VOCs) are emitted as gases from certain solids or liquids. VOCs include a variety of chemicals, some of which may have short - and long-term adverse health effects. Concentrations of many VOCs are consistently higher indoors (up to ten times higher) than outdoors. VOCs are emitted by a wide array of products numbering in the thousands.

Organic chemicals are widely used as ingredients in household products. Paints, varnishes and wax all contain organic solvents, as do many cleaning, disinfecting, cosmetic, degreasing and hobby products. Fuels are made up of organic chemicals. All of these products can release organic compounds while you are using them, and, to some degree, when they are stored.

The method used to calculate how much sound is reflected in a room by using a metric called the absorption coefficient. The Absorption Coefficient measures of how much sound is absorbed, and is not reflected.

The absorption coefficient ranges between zero and one, one meaning no sound energy is reflected and the sound is either absorbed or transmitted. For example, an opened exterior window has the absorption coefficient of one because no sound returns to the room. An effective absorber will have a sound absorption coefficient greater than .75.

  • Absorption – Trapping of sound waves
  • Acoustic Baffles – is an acoustic dampening structure that reduces the strength of airborne sound. Acoustic Baffles designed to suspend vertically from ceilings. See Live Textile: Fabric Acoustic Baffles for more information.
  • Ambient Noise – in the work place is generally irritating background noise that can come from many sources like air conditioning, outside traffic, a noisy adjacent office, nearby construction and people’s voices.
  • Damping – Dissipates vibrational energy before it can build up and radiate as sound
  • Diffusion – Scatters the sound waves in different directions
  • Distance – The greater the distance, the quieter the noise sounds
  • Echo – Echoes happen reflected sound reaches a listener’s ear with a delay after the initial creation of sound. Echo is one of the most common acoustic problems.
  • Flanking Noise – Is the sound transmission between spaces indirectly, going over or around, rather than directly through the main separating element
  • PPM - Parts per million and it also can be expressed as milligrams per liter (mg/L)
  • NRC (Noise Reduction Coefficient) Rating – NRC rating roughly translates to the amount of sound absorbed by an item. See Acoustic Rating for more information.
  • Noise and Vibration Minimising the effects of flanking transmission, air-borne noise and structure borne noise. See Noise and Vibration for more information.
  • Reverberation - Reverberation or reverb, is created when a sound or signal is reflected causing many reflections to build up and then decay or deterioration of the sound as it is absorbed by the surfaces of objects in the space.
  • Sound Insulation - Sound Insulation Eliminates noisy disturbances from above, below and adjacent rooms. See Sound Insulation for more information.
  • STC (Sound Transmission Class) Rating – STC Rating is a numerical value representing how well a structure is at reducing airborne sound transmission. See Acoustic Rating for more information.
  • VOC's Volatile organic compounds – Emitted as gases from a variety of chemicals. Some have short/long-term adverse health effects.


  • Live Art Custom Printed Acoustic Panels

    Live Art: Custom Printed Acoustic Panels

    High sound absorption. Formaldehyde free. Resistant to moisture and warping. 50mm thick. Not recommended as a tackable surface. NRC 0.85. Maximum recommended dimensions: 2400x1200...

    More Info »
  • Live Textile Fabric Acoustic Panels

    Live Textile: Fabric Acoustic Panels

    High sound absorption. Formaldehyde free. Resistant to moisture and warping. 18mm / 34mm thick. Not recommended as a tackable surface. NRC 0.50. Maximum recommended dimensions: 2400x1200...

    More Info »
  • Live Textile 2D Fabric Acoustic Panels

    Live Textile: 2D Fabric Acoustic Panels

    High sound absorption. Formaldehyde free. Resistant to moisture and warping. Shapes 18mm / 34mm thick. Blocks 18mm / 34mm / 52mm. Not recommended as a tackable surface. NRC 0.50...

    More Info »
  • Live Textile 3D Fabric Acoustic Panels

    Live Textile: 3D Fabric Acoustic Panels

    High sound absorption. Formaldehyde free.Resistant to moisture and warping. Not recommended as a tackable surface. NRC 0.90. Available in various 3D shapes. Limited fabric colours available.

    More Info »
  • Live Textile: Fabric Acoustic Baffles

    Live Textile: Fabric Acoustic Baffles

    High sound absorption. Formaldehyde free. Resistant to moisture and warping. 34mm thick. Not recommended as a tackable surface. NRC 0.85. Horizontal and Vertical, Maximum recommended dimensions: 2400x1200

    More Info »
  • Live Textile Hanging Screens

    Live Textile: Hanging Screens

    This tackable substrate offers moderate acoustical properties. The Live Textile Fabric Hanging Panel is constructed with inorganic minerals and fibres making it resistant to moisture and warping.

    More Info »
  • Live Timber Timber Slatted Acoustic Panels

    Live Timber: Timber Slatted Acoustic Panels

    Highly sound absorbent Resistant to moisture and warping. Available in a 100mm thickness. Ideal for high traffic areas. NRC 0.98. Maximum recommended dimension 2400x1200. Solid timber slats

    More Info »
  • Live Creative Poly Fibre Acoustic Panels

    Live Creative: Poly Fibre Acoustic Panels

    Decorative acoustic absorbing panel. 100% PET plastic. Avoid exposure to heat 65%C. Low VOC emission. 24mm / 36mm thick. Not recommended as a tackable surface. NRC 0.65.

    More Info »
  • Live Creative Poly Fibre Acoustic Baffles

    Live Creative: Poly Fibre Acoustic Baffles

    Huddle rooms for the Home / Office deliver plenty of appealing business benefits, ranging from greater agility to potential cost savings.

    More Info »
  • Live Creative Poly Fibre Decorative

    Live Creative: Poly Fibre Decorative

    We designs systems, specifically to meet your personal security requirements. This includes creating zones of protection: defined areas covered by specific sensors and detectors.

    More Info »
  • Live Glass Acoustic Treatment on Glass

    Live Glass: Acoustic Treatment on Glass

    Decorative absorbing panels. Curtains, Films, Poly fiber or Fabric. Low VOC emission. 24mm / 36mm thick. Not recommended as a tackable surface. Minimum recommended

    More Info »
  • Live Theatre Home Theatre Acoustics

    Live Theatre: Home Theatre Acoustics

    Custom designed, Pro or Standard. Supply of partial or full acoustic wall and ceiling treatments, equipment and automation. Supply of lighting, carpeting, curtains and theatre seating.

    More Info »
  • Live Cinema Home Cinema Acoustics

    Live Cinema: Home Cinema Acoustics

    Custom designed, Pro or Standard. Supply of full acoustic wall and ceiling treatments, equipment and automation. Supply of lighting, carpeting, curtains and theatre seating.

    More Info »
  • Live Commercial Cinemas and Cinema Multiplexes

    Live Commercial: Cinemas and Cinema Multiplexes

    Custom designed, Pro or Standard. Supply of full acoustic wall and ceiling treatments for individual or myulti, equipment and automation. Supply of lighting, carpeting, curtains and theatre seating.

    More Info »
  • Live Design Acoustic Product Development

    Live Design: Acoustic Product Development

    Design and development of new acoustic products to suit any environment and requirements. Product specification, procurement and planning.

    More Info »
  • Live Acoustic Ceiling

    Live Acoustic Ceiling

    Acoustic Ceilings help deaden the extra noise that is enter or exits a room or workspace. They also help minimise stress levels and increase productivity in the workspace.

    More Info »
  • Live Acoustic Door

    Live Acoustic Door

    Heavy-duty high performance acoustic, soundproof doors built for durability and effective sound transmission loss. (STC). Sound isolation plus the added benefit of a door that is fire rated.

    More Info »
  • Live Acoustic Wall

    Live Acoustic Wall

    Acoustically rated walls are sound absorbing walls that provide noise reduction between rooms and reduce sound reflection and echo within a room.

    More Info »